

1	A high-resolution time-of-flight chemical ionization mass spectrometer
2	utilizing hydronium ions ($\mathbf{H_{3}O^{+}}$ ToF-CIMS) for measurements of
3	volatile organic compounds in the atmosphere
4 5	Bin Yuan ^{1,2} , Abigail Koss ^{1,2,3} , Carsten Warneke ^{1,2} , Jessica B. Gilman ^{1,2} , Brian M. Lerner ^{1,2} , Harald Stark ^{2,3,4} , Joost A. de Gouw ^{1,2,3}
6	1. NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, Boulder, CO,
7	USA
8	2. Cooperative Institute for Research in Environmental Sciences, University of Colorado at
9	Boulder, Boulder, CO, USA
10	3. Department of Chemistry and Biochemistry, University of Colorado at Boulder, CO, USA
11	4. Aerodyne Research Inc., Billerica, MA 01821, USA
12	
13	Correspondence to Bin Yuan (bin.yuan@noaa.gov)
14	
15	Manuscript prepared for Atmospheric Measurement Techniques
16	

17 Abstract

18	Proton transfer reactions between hydronium ions (H_3O^+) and volatile organic
19	compounds (VOCs) provide a fast and high sensitive measurement technique for VOCs,
20	leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in
21	atmospheric research. Based on the same ionization approach, we describe the
22	development of a high-resolution (HR) time of flight chemical ionization mass
23	spectrometer (ToF-CIMS) utilizing H_3O^+ as the reagent ions. The new H_3O^+ ToF-CIMS
24	has sensitivities of 100-1000 cps/ppb (ion counts per second per part-per-billion mixing
25	ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1-second integration time for
26	simultaneous measurements of many VOC species of atmospheric relevance. Compared
27	with similar instruments with quadrupole mass spectrometer, e.g. proton-transfer-reaction
28	mass spectrometers, the ToF analyzer with mass resolution (m/ Δ m) of up to 6000 not
29	only increases measurement frequency of the instrument, but also expands the number of
30	measurable species. The humidity dependence of the instrument was characterized for
31	various VOC species and the behaviors for different species can be explained by
32	compound-specific properties that affect the ion chemistry. The new H_3O^+ ToF-CIMS
33	was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX
34	campaign in spring of 2015. The measured mixing ratios of several aromatics from the
35	H_3O^+ ToF-CIMS agreed within ±10% with independent gas chromatography (GC)
36	measurements from whole air samples. Initial results from the SONGNEX measurements
37	demonstrate that the H_3O^+ ToF-CIMS dataset will be valuable for the identification and
38	characterization of emissions from various sources, investigation of secondary formation
39	of many photochemical organic products and therefore the chemical evolution of gas-
40	phase organic carbon in the atmosphere.
41	

42 1. Introduction

43	Volatile organic compounds (VOCs) are ubiquitous in the atmosphere. The
44	oxidation of VOCs contributes to formation of ozone (Atkinson, 2000) and secondary
45	organic aerosol (SOA) (Hallquist et al., 2009). Accurate measurements of VOCs in the
46	atmosphere are essential to understand their sources, chemical transformations and hence
47	their effects on ozone and SOA formation (Isaksen et al., 2009). Measurements of VOCs
48	require techniques with high time resolution to effectively capture their high variability in
49	the atmosphere, especially for measurements performed on mobile platforms.
50	Proton transfer reaction mass spectrometry (PTR-MS) has been an important
51	scientific tool for VOC measurements, associated with high sensitivity and fast time
52	response (de Gouw and Warneke, 2007;Lindinger et al., 1998;Blake et al., 2009). The
53	first generation of PTR-MS instruments used quadrupole mass spectrometers (QMS) for
54	the detection of reagent and product ions. For atmospheric measurements, PTR-QMS
55	instruments are usually used in selected-ion mode, in which the mass filter steps through
56	several pre-selected masses consecutively each with a dwell time of 0.1-1 s (Warneke et
57	al., 2015). The measurement frequency for each species is thus determined by the total
58	cycle length, which is usually on the order of several seconds to 1 minute dependent on
59	user settings. The datasets produced from PTR-QMS are usually disjunct and the
60	information for masses beyond the selected ones is not available. The time resolution of
61	PTR-QMS is generally sufficient for ground-based measurements targeting VOC mixing
62	ratios, but not ideal for aircraft measurements or eddy covariance flux measurements of
63	more than a few species. In recent years, other mass analyzer, e.g. ion traps (Warneke et
64	al., 2005;Mielke et al., 2008;Steeghs et al., 2007) and time of flight (ToF) mass
65	spectrometers (Blake et al., 2004;Ennis et al., 2005;Tanimoto et al., 2007), were used in
66	PTR-MS to overcome some of these inherent drawbacks in PTR-QMS.
67	PTR-MS instruments that use time-of flight mass spectrometers (PTR-TOF) were
68	made commercially available in 2009 by Ionicon Analytik (Jordan et al., 2009). The
69	Ionicon PTR-TOF, equipped with Tofwerk orthogonal acceleration reflectron TOF-MS
70	(HTOF), had both much higher sensitivities (10-50 cps/ppbv) and better mass resolution
71	(m/ Δ m=~6000) than earlier PTR-TOF instruments (<5 cps/ppbv and m/ Δ m=100-1200)
72	(Jordan et al., 2009). Recently, a newer version of the Ionicon PTR-TOF equipped with a

73	quadrupole ion guide (PTR-QiTOF) was developed and is more sensitive (by a factor of
74	~25) than the previous version of Ionicon PTR-TOF that uses an electrostatic ion lens
75	system (Sulzer et al., 2014). The performance of these PTR-TOF instruments surpasses
76	those of PTR-QMS in several ways due to the ability of the ToF to obtain whole mass
77	spectra and their high mass resolution. The high mass resolution of the ToF analyzer
78	facilitates separation of isobaric isomers (Graus et al., 2010;Sulzer et al., 2014), which
79	increases the number of measurable VOC species and reduces the possible chemical
80	interferences (Warneke et al., 2015). PTR-TOF has been used successfully in several
81	field campaigns at ground sites to measure concentrations and fluxes of a large suite of
82	VOC species (Park et al., 2013;Müller et al., 2010;Kaser et al., 2013;Holzinger et al.,
83	2013). Recently, an aircraft-deployable PTR-TOF with mass resolution up to ~1000 was
84	developed and successfully deployed on the NASA P-3B research aircraft during the
85	DISCOVER-AQ campaign (Müller et al., 2014a). The deployment of this PTR-TOF has
86	demonstrated many advantages over PTR-QMS for aircraft measurements, such as much
87	higher time resolution and hence better spatial resolution, and separation of several
88	isobaric masses in the lower mass ranges (Müller et al., 2014a).
89	In this study, a high-resolution ToF-CIMS utilizing hydronium ions (H_3O^+) similarly
90	to PTR-MS was developed based on the commercial Aerodyne ToF-CIMS (Lee et al.,
91	2014). This instrument contains two quadrupole ion guides to transport ions from the drift
92	tube reaction region to the time-of-flight mass analyzer. The quadrupole ion guides, as
93	demonstrated in the PTR-QiTOF recently (Sulzer et al., 2014), provide better
94	transmission efficiency for the reagent and product ions than the conventional ion lens
95	system. The new instrument was deployed onboard the NOAA WP-3D research aircraft
96	during the SONGNEX campaign in spring of 2015. Here, we will present development
97	and characterization of the instrument and its performance during the SONGNEX
98	campaign.
99	2. H ₃ O ⁺ TOF-CIMS instrument description

100 A commercial Aerodyne chemical ionization mass spectrometer (CIMS) (Lee et al., 101 2014) was used to construct the airborne H_3O^+ ToF-CIMS (Figure 1). Briefly, the 102 Aerodyne ToF-CIMS consists of (1) an ion-molecule reaction (IMR) chamber, (2) a 103 small segmented radio frequency (RF) only quadrupole ion guide that is used as

104	collisional dissociation chamber (SSQ), (3) a second big segmented RF-only quadrupole
105	(BSQ), (4) a series of DC optics that further focus and accelerate the primary beam (PB),
106	and (5) a high-resolution ToF detector (HTOF, Tofwerk AG, Switzerland) (Bertram et
107	al., 2011). In the new H_3O^+ ToF-CIMS, the IMR chamber was replaced by a drift tube
108	(Figure 1), which provides a homogenous and controllable electric field for ion-molecule
109	reactions. The drift tube is comprised of stainless steel rings separated by Teflon rings for
110	both vacuum sealing and electronic insulation (de Gouw and Warneke, 2007). A hollow
111	cathode discharge ion source was connected in front of the drift tube to produce high
112	purity hydronium ions by introducing a flow of 5 mL min ⁻¹ of water vapor. The detailed
113	description for both drift tube and ion source can be found in previous review papers (de
114	Gouw and Warneke, 2007;Blake et al., 2009). In addition to the 3-stage split-flow turbo
115	pump (Pfeiffer SplitFlow 310) used for the high vacuum of BSQ, PB and TOF, another
116	turbo pump (Pfeiffer TMH-071-P) was installed to draw air from the SSQ and water
117	vapor from the ion source. A butterfly exhaust throttle valve (MKS T3Bi) was used to
118	control the pumping rate of the newly installed turbo pump (Figure 1), and the pressure of
119	the SSQ can be adjusted by the opening percentage of the valve. In practice, the pressure
120	of drift tube is also actively controlled (see below) and SSQ pressure only needs to be
121	adjusted sporadically.
122	The newly built H_3O^+ ToF-CIMS was deployed on the NOAA WP-3D aircraft in
123	March-April, 2015 as part of the Shale Oil and Natural Gas Nexus (SONGNEX)
124	campaign. During SONGNEX, a total of 19 flights were carried out mainly over oil and
125	gas production basins in the western United States. For the detailed flight strategies, the
126	readers are referred to the SONGNEX website
127	(www.esrl.noaa.gov/csd/projects/songnex).
128	A heated Teflon tube (40 °C) mounted inside a winglet on a window plate was used
129	to transport air into the instrument (Figure S1). Pressure at the downstream end of the
130	inlet was regulated to 180 mbar using a pressure controller. A PEEK capillary was placed
131	between the pressure controller and drift tube to further reduce the pressure from 180
132	mbar to the maintained pressure in the drift tube (2.40±0.01 mbar). During SONGNEX,
133	the 11 cm long drift tube had a drift voltage of 710 V and was heated to 50 °C, which
134	resulted in an E/N ratio (electric field to number density) of 120 Td (1 Td= 10^{-17} V cm ²)

135	inside the drift tube. The flow of the inlet varied from $\sim 500 \text{ mL min}^{-1}$ at sea level to ~ 100
136	mL min ⁻¹ at 6.5 km of altitude. Background signals of the instrument were determined by
137	passing ambient air for 90 s every 30-40 min through a Platinum catalytic converter
138	heated to 350 °C. In-flight calibrations were performed by adding a small flow (0.5-3.0
139	mL min ⁻¹) of a ten-component gas standard (see the list in Table 1) to the inlet flow
140	automatically for 90 s every 1-2 hours (Figure S1). Calibrations were conducted by
141	adding the gas standard flow to either clean air from the catalytic converter or ambient air
142	during SONGNEX. A diffusion cell introduced a small amount of 1,3,5-trichlorobenzene
143	(C ₆ H ₃ Cl ₃) into the instrument continuously to facilitate ToF mass calibration at the high
144	ends of the m/z range. Laboratory experiments show that 1,3,5-trichlorobenzene mainly
145	generates $C_6H_3Cl_3H^+$ (<i>m/z</i> 180.9373, 98.5%) in the instrument, with small contributions
146	from $C_6H_3Cl_3^+$ (<i>m/z</i> 179.9295, 1.0%) and $C_6H_3Cl_2H^+$ (<i>m/z</i> 145.9685, 0.4%). The signals
147	of $C_6H_3Cl_3H^+$ ion were around 2000 cps during the SONGNEX campaign.
148	The axial voltage gradients for SSQ and BSQ were tuned using the Thuner
149	software (Tofwerk AG) by maximizing signals of the protonated product ions of several
150	VOC species (acetone, benzene and isoprene), minimizing VOC signals from charge
151	transfer reactions with O_2^+ , and maximizing mass resolution of the TOF analyzer before
152	the campaign. In addition, the effects of turning the RF amplitudes of the SSQ and BSQ
153	were explored manually (see below). The voltage of micro-channel plate (MCP) detector
154	for TOF are determined and set before takeoff for each individual flight by maintaining
155	the single ion signal (SIS) at around 1.8 mV·ns, which effectively prevents mass
156	discrimination as the result of MCP aging (Müller et al., 2014b). The extraction
157	frequency of the TOF was set at 25 kHz, which enables to measure masses up to m/z 500.
158	During SONGNEX, mass spectra were averaged and stored to 10 Hz and were further
159	averaged afterward to 1 Hz for the analysis shown in this paper.
160	ToF data were processed using the Tofware software package (v2.5.1)
161	(www.tofwerk.com/tofware) developed by Tofwerk and Aerodyne Research Inc.
162	(www.aerodyne.com). The detailed procedures of the ToF data processing have been
163	presented in a previous publication (Stark et al., 2015). Post-measurement mass
164	calibrations were conducted using 6-7 isolated masses, including m/z 19.0178 (H ₃ O ⁺),
165	m/z 29.9974 (NO ⁺), m/z 31.9893 (O ₂ ⁺), m/z 37.0284 (H ₃ O ⁺ (H ₂ O)), m/z 55.0390

166	$(H_3O^+(H_2O)_2)$, m/z 125.9610 (FeH ₅ O ₄ H ⁺) and m/z 180.9373 (C ₆ H ₃ Cl ₃ H ⁺). Mass
167	calibration of the ToF was accurate within 5-10 ppm for various masses, similar to the
168	results reported for another Aerodyne ToF-CIMS instrument (Lee et al., 2014).
169	Instrument functions (peak shape, peak width and baseline) were derived for each
170	individual flight based on the algorithms shown in Stark et al. (2015). High-resolution
171	peak fitting to the mass spectra were performed using a user defined peak list with
172	masses up to m/z 181.
173	In the orthogonal extraction region of the TOF analyzer, ions of different masses
174	have the same energy but different velocities, and are therefore extracted at different duty
175	cycles (Chernushevich et al., 2001). The Tofware software corrects for this effect using
176	the equation of $I_{corr} = I_{raw} \times \sqrt{\frac{55}{m/z}}$ to a reference mass of m/z 55. In this study, all of the
177	signals are reported as the ToF duty cycle corrected signals (I_{corr}) , unless otherwise
178	noted.
179	3. H ₃ O ⁺ TOF-CIMS instrument performance

180 **3.1 Quadrupole ion guides**

181 In addition to hydronium ions (H_3O^+) , water clusters are also present in the instrument, including protonated water dimers $(H_3O^+(H_2O))$ and protonated water trimers 182 183 $(H_3O^+(H_2O)_2)$. In standard PTR-MS operation, the product ion signals are normalized to the reagent ion count rates to account for drifts in the ion source. Because the reagent 184 185 ions in the H₃O⁺ ToF-CIMS are so strongly dependent on humidity, the measured cluster ion distribution needs to be understood in detail as it affects the normalization procedure 186 and therefore the measured mixing ratios. As the drift tube in H_3O^+ ToF-CIMS is 187 identical to those in PTR-MS, the cluster distribution and their humidity dependence in 188 189 the drift tube are expected to be similar as in PTR-MS, which has been understood well and described in detail in de Gouw and Warneke (2007). However, the cluster 190 191 distribution can be altered in the quadrupole ion guides, because the electric field inside the ion guides is not always the same as that in the drift tube. Thus, the reagent ions and 192 193 VOC signals as a function of various settings of the quadruple ion guides are investigated 194 here.

195	The signals of the reagent ions as a function of the pressure inside the SSQ are
196	shown in Figure 2. As the SSQ pressure increases from 1.0 mbar to 1.5 mbar, the
197	intensities of all reagent ions increase, indicative of better ion transmission through the
198	SSQ at higher pressures. When the SSQ pressure is higher than 1.5 mbar, the $\mathrm{H_3O^+}\mathrm{signal}$
199	starts to decline slightly and water clusters continue to increase, implying that the reagent
200	ions shift to larger clusters at these SSQ pressures. The ratios of $\rm H_{3}O^{+}(\rm H_{2}O)/\rm H_{3}O^{+}$
201	$(R_{37/19})$ increase with the SSQ pressure throughout the range studied here. At higher
202	SSQ pressure, the effective de-clustering ability or E/N ratio is reduced. The $\rm H_{3}O^{+}(\rm H_{2}O)_{2}$
203	ions account for small a fraction of the reagent ions throughout the explored range of
204	SSQ pressures. The signals of protonated benzene and acetone at constant mixing ratios
205	(2.5 ppb) both increase with higher SSQ pressure, although the increase of benzene
206	signals is small when SSQ pressures go beyond 1.5 mbar. The protonated VOC signals
207	correlate better with H_3O^+ than with $H_3O^+(H_2O)$, suggesting that H_3O^+ ions are the
208	dominant participant in proton-transfer reactions, even though $H_3\mathrm{O}^{\scriptscriptstyle +}$ ions are measured at
209	comparable levels as $H_3O^+(H_2O)$ at high SSQ pressures. Along with this observation, the
210	observed slight reduction of H_3O^+ and disproportionally larger enhancement of
211	$\rm H_{3}O^{+}(\rm H_{2}O)$ with SSQ pressures above 1.5 mbar imply that the transmission of $\rm H_{3}O^{+}$ in
212	the SSQ is significantly lower than that of $H_3O^+(H_2O)$ (and other higher m/z). Choosing
213	the optimum SSQ pressure therefore represents a trade-off between higher intensities of
214	the reagent (and VOC) ions and lower signals of water clusters. We have selected to run
215	the instrument with the SSQ pressure at 1.30 ± 0.01 mbar during the SONGNEX
216	campaign.
217	In addition to the SSQ pressure, the signals of reagent ions and VOC product ions
218	were also explored as a function of RF amplitudes for both SSQ and BSQ (Figure S2 and
219	Figure S3). From these experiments, the main findings are: (1) as expected, lower RF
220	amplitudes in the BSQ lead to better transmission for light ions but worse ion focusing
221	(Chernushevich et al., 2001). (2) Ion chemistry needs to be taken into account in the SSQ,
222	for example H_3O^+ declines and $H_3O^+(H_2O)$ increases when RF amplitudes decrease from
223	80 V to 40 V. (3) Variations of VOC signals generally follow the reagent ions, but they
224	are influenced more by poorer focusing at low RF amplitudes, especially for heavier
225	VOC masses. (4) O_2^+ signals and charge transfer products of aromatics increase quickly

226	when RF amplitudes of the SSQ are higher than 80 V, possibly due to discharge in the
227	SSQ (TOF-CIMS manual indicates that discharge happens with >200 V). Based on these
228	results, the RF amplitudes of the SSQ and BSQ were set to 50 V and 350 V, respectively.
229	3.2 Transmission of reagent ions and their humidity dependence
230	The humidity of the sampled air affects the distribution of the reagent ions in PTR-
231	MS (de Gouw and Warneke, 2007). Figure 3A shows the reagent ion signals versus water
232	vapor mixing ratios (w) of the sampled air from a laboratory experiment. As expected, the
233	${ m H_3O^+(H_2O)}$ signals increase as the air gets more humidified. The signals of ${ m H_3O^+(H_2O)_2}$
234	were small, but increase quickly with humidity. However, there is also an increase of
235	H_3O^+ signals with humidity. Compared to dry air with $w=0$ g/kg, the H_3O^+ signals are
236	52% higher under the condition with $w=22.4$ g/kg equivalent to a relative humidity (RH)
237	of 90% at 25 °C. This behavior is in marked contrast to the reported dependence of the
238	reagent ions on humidity in a conventional PTR-MS using ion lenses to transfer ions (de
239	Gouw and Warneke, 2007): in these instruments, H_3O^+ decreases and $H_3O^+(H_2O)$
240	increases with rising humidity and the total intensities of the two reagent ions are
241	relatively stable with humidity with the remaining difference explainable from the
242	difference in detection efficiency between H_3O^+ and $H_3O^+(H_2O)$.
243	The distribution of H_3O^+ and $H_3O^+(H_2O)$ ions exiting the SSQ is determined by
244	the distribution of these same ions entering the SSQ as well as the fragmentation and
245	clustering processes that modify the distribution in the SSQ. At the SSQ pressure used, an
246	individual ion entering the SSQ undergoes many collisions that can add or subtract a
247	ligand molecule. As a result, the transmission efficiency of an reagent ion in the SSQ
248	reflects the averaged transmission efficiencies of ions with m/z 19 and m/z 37 weighed
249	by the time the ion spends as H_3O^+ vs. $H_3O^+(H_2O)$. This issue is qualitatively similar to
250	the measured mobilities of H_3O^+ and $H_3O^+(H_2O)$ observed in the drift tube of PTR-MS
251	(Warneke et al., 2001). The larger H_3O^+ signals at higher humidity in the H_3O^+ ToF-
252	CIMS are the result of the low transmission efficiency of H_3O^+ ions compared to other
253	heavier masses, which has been inferred from the dependence of the reagent ions with
254	SSQ pressures above. The low transmission of H_3O^+ ions is related to the low-mass cut-
255	off of the RF-only quadrupoles (Chernushevich et al., 2001). The strong increase in H_3O^+
256	signal intensity with humidity reflects the fact that while ions may be detected as H_3O^+ ,

257	they spent a larger fraction of time as $\mathrm{H_3O}^+(\mathrm{H_2O})$ in the SSQ at higher humidity and are
258	therefore transferred with a higher average transmission efficiency.
259	The transmission efficiency of H_3O^+ ions relative to $H_3O^+(H_2O)$ is quantified
260	using additional laboratory experiments. Methanol and acetonitrile were introduced into
261	the instrument at such high concentrations that significant fractions of the reagent ions
262	were depleted (Figure S4). Methanol and acetonitrile are used, because their product ion
263	masses (m/z 33 and m/z 42) bracket the mass of $\mathrm{H_3O^+(H_2O)}$ ions. We observed more
264	product ions of both methanol (CH ₄ OH ⁺ , m/z 33.0335) and acetonitrile (C ₂ H ₃ NH ⁺ , m/z
265	42.0338) than the summed depletion of H_3O^+ and $H_3O^+(H_2O)$. As the transmission factor
266	of $H_3O^+(H_2O)$ ions should be in between protonated methanol and acetonitrile ions, the
267	ratios between H_3O^+ changes and the changes of the sum of product ions and $H_3O^+(H_2O)$
268	ions in each depletion experiment reflect the ratios of the transmission efficiency between
269	H_3O^+ and $H_3O^+(H_2O)$ $(T_{H_3O^+}/T_{H_3O^+(H_2O)})$. From the scatterplots in Figure S4, the
270	$T_{H_3O^+}/T_{H_3O^+(H_2O)}$ ratios are determined to be in the range of 0.21-0.35 and 0.14-0.25
271	from the experiments with methanol and acetonitrile, respectively (Figure S5). The
272	discrepancies between the estimates from methanol and acetonitrile may come from the
273	differences between the transmission factors of m/z 33 and m/z 42 (Figure S6), and/or
274	small amount of methanol forming methanol-water clusters (see section 3.3). The
275	determined $T_{H_30^+}/T_{H_30^+(H_20)}$ ratios are larger at higher water vapor mixing ratios
276	(Figure 3B, also in Figure S5), in accordance with the expectation of a higher effective
277	transmission efficiency of H_3O^+ ions with increasing humidity discusses above.
278	The relationship of $T_{H_30^+}/T_{H_30^+(H_20)}$ versus water vapor mixing ratios shown in
279	Figure 3B can be used to correct the measured H_3O^+ signals to the same transmission
280	efficiency as $H_3O^+(H_2O)$ (Figure 3C). The corrected H_3O^+ signals exhibit slightly lower
281	signals at higher humidity, which is more similar to the relationship observed in the PTR-
282	MS drift tube (de Gouw and Warneke, 2007). The summed signals of the corrected $\mathrm{H_{3}O^{+}}$
283	and measured $H_3O^+(H_2O)$ are also shown in Figure 3C. We see higher total reagent ion
284	signals at increasing humidity. It is clear that $\mathrm{H_3O^+}$ ions dominate the reagent ions in the
285	drift tube throughout the explored humidity range, even though the measured $\mathrm{H_3O}^+$
286	signals are lower than $H_3O^+(H_2O)$ ions at high humidity levels. At a high humidity level

287	(RH=90% at 25 °C, w=22.4 g/kg), $H_3O^+(H_2O)$ ions account for 24-30% of the total
288	reagent ions.
289	Taken together, both the signals of the reagent ions and their transmission
290	efficiency in the instrument exhibit non-linear relationships with humidity. The total
291	reagent ion signals can be derived from the determined $T_{H_3O^+}/T_{H_3O^+(H_2O)}$, but it is
292	associated with significant uncertainties (Figure 3C). A simple equation to derive a
293	parameter with little humidity dependence from reagent ion signals seems to be difficult.
294	Thus, the product ion signals will be normalized to H_3O^+ signals of 10^6 cps to account for
295	drifts in the ion source. Normalization to H_3O^+ signals does not involve any mathematical
296	computation of the reagent ions, which may introduce extra uncertainty.
297	The ratios of $H_3O^+(H_2O)$ ions to H_3O^+ ions ($R_{37/19}$) can be used as a proxy for
298	humidity in PTR-MS (de Gouw et al., 2003a). The dependence of $R_{37/19}$ with water
299	vapor mixing ratios of the sampled air is shown in Figure 3D. We see higher $R_{37/19}$ ratios
300	with increasing humidity from both laboratory experiments and ambient measurements
301	during the SONGNEX, suggesting that $R_{37/19}$ is also a good internal humidity indicator
302	for the instrument. The agreement between laboratory experiments and ambient data is
303	good, considering that the humidity sensors used for laboratory experiments were not
304	cross-calibrated with the sensors on the NOAA WP-3D. The correlation coefficients from
305	laboratory experiments and SONGNEX ambient data are 0.98 and 0.99, respectively,
306	both indicative of tight linear relationship of the data points. The intercept in Figure 3D is
307	the result of excess water vapor entering the drift tube from the ion source. Based on the
308	linear fit to SONGNEX data points in Figure 3D, the $R_{37/19}$ ratio in the instrument is 1.4
309	at a humidity level of RH=90% at 25 °C (or w=22.4 g/kg), which will be used to
310	characterize the instrument response and compare with dry conditions in this study.
311	3.3 The humidity dependence of VOC sensitivities
312	3.3.1 Species without significant dehydration and hydration
313	A series of laboratory experiments were performed to describe instrument
314	sensitivities of various VOC species as a function of humidity. Figure 4 shows the results
315	for acetone and benzene from one of the experiments. Constant mixing ratios (8.0 ppb in
316	Figure 4) of acetone and benzene were introduced into the instruments and the

317 background subtracted raw signals of protonated product ions of the two compounds were observed at various humidities. As described in the previous section, $R_{37/19}$ is used 318 319 as the indicator of humidity. Protonated acetone signals increase with rising humidity, 320 whereas protonated benzene signals decline under humidified conditions. The signals of protonated acetone and protonated benzene at the humidity level of $R_{37/19}=1.4$, 321 equivalent to RH=90% at 25 °C, are 111% and 32% of those under dry condition, 322 respectively. The humidity dependencies of these two species are similar to that reported 323 324 for conventional PTR-MS in many previous studies (Warneke et al., 2001; de Gouw et al., 325 2003a). 326 The normalized signals of acetone and benzene from the humidity experiments are shown in Figure 4B. As illustrated in the previous section, H₃O⁺ signals are 52% 327 higher at $R_{37/19}$ =1.4 relative to dry condition. The increase of H₃O⁺ signals with 328 329 humidity is apparently larger than the increase of protonated acetone, which in turn leads 330 to a reduction of the normalized protonated acetone signals with increasing humidity. Because of the low transmission of H_3O^+ ions and clustering/de-clustering effects as 331 described earlier, the normalization to reagent ions leads to a different humidity 332 dependence of the normalized signals in the H₃O⁺ ToF-CIMS compared to that in the 333 334 conventional PTR-MS. The normalized signals at varying humidity levels relative to that at dry condition 335 for acetone, benzene and other VOC species are determined. After attempts using several 336 337 different fit functions to describe the data points, a double exponential function was 338 found to achieve the best representation of the data. The fitted humidity curves for 339 acetone, benzene and other VOC species are compiled in Figure 5. Generally, a stronger 340 humidity dependence was observed for hydrocarbons than for OVOCs. Comparing the 341 results of the aromatics (benzene, toluene, o-xylene, methylstyrene, 1,2,4-342 trimethylbenzene and p-cymene), we see less humidity dependence for heavier aromatics. The same trend is also observed for ketones (acetone, MEK, pentanone and hexanone). 343 344 The heavier species in the two compound series tend to have higher proton affinities (PA) 345 (Hunter and Lias, 1998), suggesting that proton affinities of the species play a role in the 346 humidity dependence.

347	The fractions of normalized signals at $R_{37/19}=1.4$ relative to dry condition
348	$(f_{R_{37/19}=1.4})$ were determined and plotted as a function of proton affinities of the species
349	in Figure 5C. A positive correlation between the determined fractions and proton
350	affinities of VOC species is generally observed. This is expected, as a higher proton
351	affinity for a VOC species has several implications: (1) the reaction with $H_3O^+(H_2O)$ ions
352	is exothermic when the proton affinity exceeds that of water dimer (801 kJ/mol); and (2)
353	the reaction more readily becomes exothermic through either direct proton transfer or
354	other routes (Midey et al., 2002). The data points in Figure 5C are color-coded using the
355	permanent dipole moment (μ_D) of the neutrals, which has been shown to affect the
356	efficiency of ligand switching reactions between VOC species and water clusters (Spanel
357	and Smith, 1995). It is clear that species with $\mu_D < 1$ D are more strongly humidity
358	dependent than the species with $\mu_D > 1$ D, which implies that ligand switching reactions
359	are important in the instrument as the result of substantial amounts of $\mathrm{H_3O^+(H_2O)}$ ions.
360	Based on proton affinity and permanent dipole moment, the species shown in Figure 5C
361	can be divided into four groups: group I with PA>801 kJ/mol and μ_D >1 D (e.g. acetone);
362	group II with PA<801 kJ/mol and μ_D >1 D (e.g. acetaldehyde); group III with PA>801
363	kJ/mol and $\mu_D < 1$ D (e.g. isoprene); group IV with PA<801 kJ/mol and $\mu_D < 1$ D (e.g.
364	benzene). Species in group I (high PA and μ_D) can undergo proton transfer with
365	$H_3O^+(H_2O)$ and H_3O^+ at similar rate constants, whereas the reactions with $H_3O^+(H_2O)$ are
366	either not happening or inefficient for species in group IV (low PA and μ_D). For species
367	in group II (low PA, high μ_D) and III (high PA, low μ_D), ligand switching and direct
368	proton transfer reaction with $H_3O^+(H_2O)$ can occur in the instrument, respectively.
369	The inverse of H ₃ O ⁺ signal relative to dry conditions $(\frac{1}{m_{19}})$ was included in Figure
370	5 (A and B) as a reference. If the humidity dependence for a VOC species follows this
371	reference line, the raw signal of the VOC actually has no humidity dependence and the
372	lower normalized signals at higher humidity levels are solely the result of normalization
373	to higher H_3O^+ signals. Species above this reference line are associated with higher raw
374	signals at higher humidity, and vice versa. As discussed in section 3.2, the increase of
375	$\mathrm{H_{3}O^{+}}$ signals with rising humidity is caused by a higher effective transmission of ions
376	detected as H_3O^+ (Figure 3B). Thus, the upper limit of the humidity dependence curve
377	should be a flat unity line in Figure 5 (A and B) (see exceptions in section 3.3.2). Many

- 378 heavier OVOC masses were observed during SONGNEX, but their humidity dependence
- 379 was not explored. As higher proton affinities are expected for these heavier OVOC
- 380 species, the humidity dependence curves for these heavier OVOCs should lie in the
- 381 shaded area filled by patterns in Figure 5 (A and B).
- 382 *3.3.2* Species with significant dehydration and hydration
- 383 Product ions of the species explored for humidity dependence in the previous section
- 384 (3.3.1) are associated with minor dehydration following the proton transfer reaction.
- 385 Dehydration happens when the product ion of a VOC species fragments by losing one or
- 386 more water molecules. Propanols and higher alcohols are known to mainly yield
- 387 dehydration product ions in PTR-MS (Spanel and Smith, 1997;Blake et al.,
- 388 2009; Warneke et al., 1996). For example, isopropanol (C₃H₇OH, PA=795.4 kJ/mol) is
- mainly detected as $C_3H_7^+$ (*m/z* 43.0542), rather than $C_3H_8OH^+$ (*m/z* 61.0648) in H_3O^+
- ToF-CIMS (Figure 6A). We see higher $C_3H_8OH^+/C_3H_7^+$ ratios with increasing humidity
- in the instrument. The measured humidity dependence of $C_3H_7^+$ ions is similar to that of
- acetaldehyde (and other OVOCs), whereas more $C_3H_8OH^+$ ions are detected with
- increasing humidity and the normalized signal of $C_3H_8OH^+$ ions at $R_{37/19}=1.4$ is 1.7
- times of in dry air. Similar to i-propanol, a positive dependence of protonated ethanol on
- humidity is also observed (Figure 6B), as ethanol fragments significantly by losing a
 water molecule as well (Baasandori et al., 2015).
- 397 In addition to dehydration, hydrated product ions in the form of $MH^+(H_2O)$ (where
- 398 M is the formula of VOC species) are observed, including acetaldehyde, acetone,
- 399 methanol and acetic acid (Figure 7A). The ratios of hydration ions to protonated
- 400 molecular ions $(MH^+(H_2O)/MH^+)$ are observed to increase with humidity for these
- 401 compounds. Among the species investigated, formic acid (HCOOH, PA=741.8 kJ/mol)
- 402 and isocyanic acid (HNCO, PA=753.1 kJ/mol) are clustering the most, with
- 403 $MH^+(H_2O)/MH^+$ ratios of 0.34 and 1.2 at $R_{37/19}=1.4$, respectively. The protonated ions
- 404 of the two compounds both decrease quickly with humidity, and the normalized signals at
- 405 $R_{37/19}=1.4$ are both only approximate 2% of those at dry conditions. The signals of
- 406 hydration ions cannot account for the difference between the humidity dependent curves
- 407 of these two compounds and the region other OVOCs occupy in Figure 5. The reason for
- 408 the strong humidity dependence of the two compounds is not known, but it is possibly

due to enhanced loss of ions after hydration. A similar enhanced loss of ions at higher 409 humidity was observed for formic acid in a PTR-QMS at a low E/N ratio (85 Td), but not 410 at higher E/N ratios (Baasandorj et al., 2015). Baasandorj et al. (2015) (see Figure 5f in 411 their paper) showed that, at the low E/N ratio (85 Td), protonated ions of formic acid 412 decrease by 12 ncps/ppb and hydration ions only increase by 6 ncps/ppb going from 413 RH=18% to RH=88%. The enhanced loss of isocyanic acid at higher humidity might be 414 related to its hydrolysis, which is reported to be accelerated by water dimer and trimer 415 416 (Raspoet et al., 1998). 417 The examples of isopropanol, formic acid and isocyanic acid suggest that the humidity dependence can be affected by dehydration and hydration processes of the 418 product ions. The abundance of water molecules affects the equilibrium ratios of the 419 420 respective ion pairs. In contrast, there are some species associated with significant 421 fragmentation without water molecule as a neutral product, e.g., monoterpenes and pcymene, which exhibit similar humidity dependence as other VOCs (Figure 5C). 422 423 Therefore, special attention should be paid to the humidity dependence of the species 424 associated with either significant fragmentation by losing water molecule or significant 425 molecule-water clusters. 426 3.4 Mass resolving power and separation of isobaric masses The mass resolving power $(m/\Delta m)$ was derived from the observed linear 427 relationship between the full-width half maximum (FWHM) of several isolated mass 428 peaks and their m/z using Tofware (Stark et al., 2015). The typical m/ Δm for the H₃O⁺ 429 430 ToF-CIMS during the SONGNEX campaign is shown in Figure S7. The m/ Δm in the 431 range of m/z 30 - 200 (where most VOCs were detected), are 3900-5900 with higher 432 resolution for heavier masses. These mass resolutions are sufficient to separate many 433 isobaric ions residing at the same nominal masses. Figure 8 shows the separation of C8 434 aromatics ($C_8H_{10}H^+$, m/z 107.0855) from benzaldehyde ($C_7H_6OH^+$, m/z 107.0491) for m/z107 during a flight leg (18:15-18:45 UTC) over the Permian Basin in Texas, US. The two 435 436 mass spectra in A and B are 30 s averages centered around 18:25:00 and 18:35:10, 437 respectively. The two time windows had either benzaldehyde or C8 aromatics as the 438 higher peak between the two. The time series of benzaldehyde and C8 aromatics 439 determined from the mass spectral fits for this 30-min period correlated well with acetone

440	(R=0.87) and benzene $(R=0.94)$, respectively. This is consistent with the expectation that				
441	benzaldehyde was mainly from secondary formation and C8 aromatics were dominated				
442	by primary emissions from oil and gas activities. The signals at m/z 107 are usually				
443	assigned to C8 aromatics in PTR-QMS studies (de Gouw and Warneke, 2007). Although				
444	the possible interference from benzaldehyde to C8 aromatics has been known, it usually				
445	constitutes a small fraction of the total signal at nominal mass 107 (Warneke et al., 2003).				
446	The example shown in Figure 8 indicates that benzaldehyde, in some environments, can				
447	contribute significantly to signals at nominal mass 107.				
448	Based on results in previous studies (Stark et al., 2015; Graus et al., 2010), the mass				
449	resolving power of the ToF analyzer presented in this study can separate many of the				
450	isobaric masses in the mass range of $m/z < 200$ by utilizing the high-resolution peak fitting				
451	algorithms. The separation of isobaric ions has several advantages over the nominal mass				
452	data of PTR-QMS: (1) reduce chemical interferences, e.g. the interference of				
453	benzaldehyde to C8 aromatics at nominal m/z 107 as shown above; (2) decrease				
454	background signals for several compounds of interest, e.g. for methanol (Müller et al.,				
455	2014a) and acetaldehyde, the instrument backgrounds of which have interferences from				
456	O_2H^+ and CO_2H^+ at the same nominal masses, respectively; (3) increase the number of				
457	species that can be measured. In general, 10-20 compounds are usually measurable by the				
458	PTR-QMS explicitly without significant interference depending on the origin of the air				
459	masses (de Gouw and Warneke, 2007). During the SONGNEX campaign, a total of 1055				
460	peaks between m/z 12 and m/z 181 were identified and assigned to signals in the mass				
461	spectra of H_3O^+ ToF-CIMS. Not all of these mass signals can be used for VOC				
462	quantification. Many masses (1) are associated with large errors from high-resolution				
463	peak fittings as the result of a much larger peak nearby and/or poor separation from				
464	another peak; or (2) have no significant enhancement over instrument background. Over				
465	260 masses had periods (at least 1 min) with signal to background ratios larger than three				
466	during the flight over the Permian Basin on April 23, 2015. Although not all of these				
467	masses are attributable to specific compounds, chemical formulas of the masses give				
468	more detailed information on the chemical composition than just the nominal m/z .				
469	Detailed interpretation of the mass spectra in various air masses during the SONGNEX				
470	campaign will be presented in a separate publication (Koss et al., in prep).				

3.5 Background correction, in-flight calibration and detection limits 471 472 The humidity dependence curves illustrated in Figure 5 were used to correct the normalized signals of various VOC species from measurements made during SONGNEX. 473 After that, background signals were averaged for each measurement cycle and 474 475 interpolated to the periods between background measurements. Two features in ambient measurements were considered in the interpolation of background signals. First, we 476 observed continuously decrease of background signals for some ions during the flights 477 478 (Figure S8B). The decrease of background signals cannot be avoided during aircraft 479 measurements, as the instrument only had 2-3 hours start-up time in the morning of each 480 flight day and the instrument backgrounds usually become lower as the instrument runs. Second, background signals for many ions are dependent on humidity in the air, even 481 482 after the correction for the humidity dependence of their sensitivities (Figure S8D). This 483 is also of particular importance for aircraft measurements, as a rapid change of humidity is encountered during aircraft ascents and descents (de Gouw and Warneke, 2007). 484 485 Exponential decay function was used to describe the continuous decline of background signals, whereas humidity dependence of background signals was described using linear 486 487 relationships with one of the humidity indicators $(R_{37/19}, H_3O^+(H_2O)_2/H_3O^+, O_2^+)$ signals and CO_2^+ signals). Both effects were important for some ions and they were taken into 488 489 account by consecutive implementation of the procedures (Figure S8C). For other ions, a 490 simple linear interpolation was adopted (Figure S8E). The variations of instrument 491 backgrounds with instrument running time and humidity may also be critical for other 492 PTR-MS and CIMS instruments, especially for aircraft deployments and in some 493 circumstances when meteorological conditions change quickly during ground 494 measurements. The procedures shown here should be easy to incorporate into these 495 measurements if necessary. 496 The measurements of each in-flight calibration are averaged in the same way as the 497 background measurements. The results for benzene, isoprene, acetaldehyde and acetone 498 during the SONGNEX campaign are shown in Figure 9. Each of the four species 499 represents one of the four groups of compounds described in section 3.3. The calibration 500 results for the four species show tight linear correlations between corrected normalized 501 signals and calculated mixing ratios from the gas standard (R>0.995), indicating stable

502	instrument performance from flight to flight during the SONGNEX campaign. No clear
503	dependence of sensitivities on $R_{37/19}$ is observed, demonstrating that the effects of
504	humidity on the sensitivities are properly accounted for by the procedures described
505	above. The measured sensitivities for various VOC species are shown in Table 1, which
506	lists sensitivities under dry conditions. The sensitivities for most VOC species of interest
507	are better than 400 cps/ppb, with several species higher than 800 cps/ppb. The lower
508	sensitivity for methanol is consistent with previous studies (Warneke et al., 2015),
509	whereas lower sensitivities for isoprene and α -pinene are due to the fragmentation of their
510	product ions.
511	The counting statistics of the ions follow a Poisson distribution, i.e. the 1- σ error of
512	counting N ions is \sqrt{N} . Recent studies showed that the high-resolution peak fitting to the
513	TOF mass spectra can add significant additional noise to the fitted peak intensities of the
514	masses (Cubison and Jimenez, 2015;Corbin et al., 2015). Figure 10 shows standard
515	deviations of the background signals versus the background signals themselves from the
516	individual zeroing periods for the masses listed in Table 1 during one SONGNEX flight
517	(April 27, 2015). Note that the signals shown in Figure 10 were not corrected for the ToF
518	duty cycle, so they represent the actual ion signals detected by the MCP. Real variations
519	of background signals due to instrument drift may contribute some to the standard
520	deviations of background signals. Thus, data points in Figure 10 are best viewed as the
521	upper limits of the errors from counting statistics. Most of the data are observed in the
522	region between \sqrt{N} and $2 \times \sqrt{N}$, suggesting that high-resolution peak fitting can increase
523	the errors in the ion signals by as much as a factor of 2 for the VOC masses in Table 1.
524	The signal to noise ratio (S/N) of the species X from a CIMS instrument can be
525	expressed by (Bertram et al., 2011):

$$\frac{S}{N} = \frac{C_f[X]t}{\alpha \times \sqrt{C_f[X]t + 2Bt}} \tag{1}$$

Here, [X] is the mixing ratios of the species (ppb), C_f is the sensitivity of the species (cps/ppb) and *B* is the background count (cps), both of which are values without corrections for the ToF duty cycle. *t* is the sampling time (s). α is the scaling factor of the errors in ion signals relative to Poissonian statistics, and used to account for the additional errors from HR peak fitting. α for each species is determined from Figure 10

(see Table 1 for values). We define the detection limit as the mixing ratio with a S/N ratio 531 532 of 3. The calculated 1-s detection limits for various species are listed in Table 1. The 1-s detection limits are better than 100 ppt for most species. Higher detection limits for 533 acetaldehyde, acetic acid, isoprene, methanol and ethanol are the result of higher 534 535 background counts for the former two species and lower sensitivities for the latter three species, respectively. 536 Figure 11 compares sensitivities and detection limits of methanol, acetone and 537 538 benzene between the NOAA PTR-QMS from several previous campaigns (Warneke et 539 al., 2011) and the new H₃O⁺ ToF-CIMS during SONGNEX. As discussed in Warneke et 540 al. (2011), the performance of the NOAA PTR-QMS improved gradually as a result of many instrumental developments, which led to higher sensitivities and lower detection 541 542 limits. As shown in Figure 11, the sensitivity of acetone in the new H_3O^+ ToF-CIMS is 543 similar to that of PTR-OMS in the recent campaigns (CalNex and UBWOS 2013), whereas sensitivities of methanol and acetone are somewhat lower than the PTR-QMS. 544 545 The performance of a commercial PTR-TOF (PTR-TOF 8000, Ionicon Analytik) during the UBWOS 2013 (Warneke et al., 2015) is also included in Figure 11. We observed 546 much higher sensitivities for our H_3O^+ ToF-CIMS than the PTR-TOF used in UBWOS 547 2013. The large difference in the sensitivities between the PTR-TOF 8000 and H_3O^+ 548 ToF-CIMS is mainly attributed to the difference between ion lenses used in the PTR-TOF 549 550 to transfer ions from the drift tube to the mass analyzer and the quadrupole ion guides 551 used in H₃O⁺ TOF-CIMS. A large enhancement in sensitivities of a PTR-TOF by using 552 quadrupole ion guides was recently also demonstrated in a PTR-QiTOF instrument from 553 Ionicon Analytik (Sulzer et al., 2014), which achieved a benzene sensitivity up to 2900 554 cps/ppb. 555 As discussed in the introduction, the operation of a QMS and a TOF-MS is 556 different. The TOF instruments acquire full mass spectra every second (or faster), 557 whereas PTR-QMS is usually operated in selected-ion mode with 1-sec measurement for 558 each of the selected masses every ~ 15 seconds. So if the total counts measured in each 559 15-second period are calculated (the middle panel in Figure 11), the overall signal to noise of the ToF instruments will compares very favorably to the PTR-OMS. 560

Consistent with the sensitivities, 1-s detection limits of H_3O^+ ToF-CIMS are close 561 to those in PTR-QMS and better than the PTR-TOF used during the UBWOS 2013. As 562 with sensitivities, the detection limits of TOF instruments compare more favorably to 563 QMS if measured data is averaged to the total cycle length of a PTR-QMS to scan the 564 selected masses for their dwell time. We note that the detection limits for methanol, 565 acetone and benzene in the PTR-QiTOF were not reported in Sulzer et al. (2014), and 566 hence a comparison with H_3O^+ ToF-CIMS is not possible at this point. 567 3.6 Inter-comparisons with GC-MS 568 In addition to H_3O^+ ToF-CIMS for VOC measurements, whole air samples were 569 570 collected into canisters in-flight and were analyzed post-flight by GC-MS (iWAS) during 571 the SONGNEX campaign. A total of 72 samples were obtained for most flights. The fill 572 time for each canister was 3-15 s dependent on aircraft altitude. A brief description of the 573 iWAS system was provided in recent publications (de Gouw et al., 2015; Warneke et al., 2016). A few compounds were measured by both H_3O^+ ToF-CIMS and the iWAS 574 575 system, including benzene, toluene and C8 aromatics. For C8 aromatics, the H_3O^+ ToF-CIMS measured the total mixing ratios of the isomers, whereas the iWAS system was 576 577 able to measure mixing ratios for the individual isomers (o-xylene, m/p-xylene and 578 ethylbenzene). 579 Figure 12 compares measured results for benzene, toluene and C8 aromatics between H_3O^+ ToF-CIMS and iWAS. The agreement between the two instruments is 580 581 good for all three aromatic species, with slopes in the range of 0.89-1.1 and correlation coefficients (R) larger than 0.9. We note that there are a few data points with larger 582 583 disagreement, which are the result of imperfect time alignment of the two measurements 584 during large transient concentration spikes downwind from point sources. 585 3.7 Applications to ambient measurements

As mentioned above, the H_3O^+ ToF-CIMS was deployed onboard the NOAA WP-3D during the SONGNEX campaign. Figure 13 shows measurement results from a portion of a flight on April 13, 2015 over the Denver-Julesburg Basin, which is an active oil and gas extraction region. Mixing ratios of benzene and toluene were elevated over and downwind from the oil/gas field. Several concentration spikes of the two aromatics were observed and attributed to large point sources related to oil and gas activities. Urban

592	emissions may also contribute to the mixing ratios of benzene and toluene, when the
593	NOAA WP-3D flew over the cities (Loveland, Fort Collins and Greely) in the area. As
594	shown in Figure 13, variations of benzene and toluene mixing ratios below 100 ppt still
595	tracked each other well, illustrating the low detection limits of the two compounds in the
596	$\mathrm{H_{3}O^{+}}$ ToF-CIMS. As the emissions of aromatics and other VOCs from motor vehicles are
597	declining in both U.S. and European cities (Warneke et al., 2012;Derwent et al., 2014),
598	the need for techniques (e.g. our H_3O^+ ToF-CIMS) that can measure these compounds
599	rapidly and accurately with low detection limits is increasing.
600	Concentration peaks of acetonitrile were detected several times in this period, when
601	the aircraft sampled plumes from agricultural burns in the area (de Gouw et al., 2003b).
602	The concentration peaks of acetonitrile were pretty narrow, especially the one at 21:34
603	UTC (see the inserted graph in Figure 13B). These small fire plumes can be easily missed
604	if a PTR-QMS had been applied for the detection of acetonitrile, as PTR-QMS has a duty
605	cycle of only a few percent for each individual mass, as shown in the inserted plot in
606	13B. Along with acetonitrile, furan and furfural were also observed in these biomass
607	burning plumes. Furan is a known emission from biomass burning and has been detected
608	in the atmosphere mainly using PTR-MS (de Gouw and Warneke, 2007;Karl et al.,
609	2007). In PTR-QMS, furan cannot be distinguished from isoprene. Its aldehyde
610	derivatives, furfurals, were only measured in a recent laboratory experiment of biomass
611	burning emissions (Stockwell et al., 2015) and in a forest fire plume in the US (Müller et
612	al., 2015) both by PTR-TOF.
613	The third class of compounds shown in Figure 13 is acetaldehyde and acetone.
614	Time series of the two OVOCs were similar to those of benzene and toluene with
615	elevated mixing ratios over and downwind from the oil and gas wells, but they lacked the
616	concentration spikes observed for the aromatics, consistent with secondary formation as
617	their main sources. Acetaldehyde and acetone were also enhanced in the biomass burning
618	plumes.
619	As a final example, acetic acid and ethanol were observed in both oil/gas and
620	biomass burning plumes. Additional peaks of acetic acid and ethanol were detected
621	shortly before and after 21:00 UTC. These enhanced mixing ratios were believed to be
622	the result of emissions from agricultural facilities in this area. Weld County, the main

flight area shown in Figure 13, is home to over half million beef and dairy cattle in over 623 624 100 feedlots facilities. Emissions of acetic acid and ethanol from dairy operations have 625 been reported recently in the Central Valley of California (Gentner et al., 2014). Figure 13 demonstrates that four different groups of VOC species exhibited with 626 distinctly different time series and spatial distributions, as the result of their different 627 sources. The examples in Figure 13 illustrate that the high time resolution dataset from 628 H₃O⁺ ToF-CIMS provides important information on characterizations of various air 629 630 masses in the atmosphere. Along with unique tracers (e.g. acetonitrile for biomass 631 burning), rich information on the chemical signatures will help to identify and separate the contributions of different sources to air mass components in the atmosphere. 632 Measurements of secondary products, in conjunction with primary emissions will be 633 valuable to constrain chemical evolution of gas-phase organic carbon in the atmosphere. 634

635 4. Conclusions

In this study, an aircraft-deployable H₃O⁺ ToF-CIMS instrument was developed 636 637 based on a commercial Aerodyne ToF-CIMS. We characterize the humidity dependence of reagent ions and instrument sensitivities for various VOC species. The new H_3O^+ ToF-638 CIMS has sensitivities in the range of 100-1000 cps/ppbv for many VOCs of interest and 639 the 1-s detection limits are in the range of 20-500 ppt depending on product ion masses 640 641 and their instrument backgrounds. The instrument was deployed onboard the NOAA WP-3D research aircraft as part of the SONGNEX campaign in March-April of 2015. The 642 measured mixing ratios for several aromatics from the H_3O^+ ToF-CIMS agreed very well 643 with independent GC measurements from whole air samples. Some initial results from 644 the instrument demonstrate that the H₃O⁺ ToF-CIMS dataset will be extremely valuable 645 646 for the characterization of VOC emissions and photochemistry in the atmosphere. We showed that the low transmission of H₃O⁺ ions and secondary ion chemistry 647 648 inside the SSQ complicates signal normalization and interpretation of the humidity dependence of VOC sensitivities. Further development by removal of the SSO may 649 650 ameliorate this issue and is being considered. We also anticipate a further increase in 651 sensitivities from these modifications, as shown in a recent publication (Sulzer et al., 2014). We show that many instrument settings, including SSQ pressure, RF voltages in 652 653 quadrupoles and the axial voltage gradients along the quadrupoles, affect both reagent

ions and VOC signals significantly in our instrument. Some of these effects were 654 explored or seen in other Aerodyne TOF-CIMS instruments as well (Zheng et al., 655 2015;Lopez-Hilfiker et al., 2015). The next generation of PTR-MS (PTR-QiTOF) that 656 uses quadrupole ion guides for ion transmission may also be affected by some of 657 secondary ion chemistry in the quadrupole. Instruments using different ion chemistry are 658 expected to behave differently with these settings. Therefore, characterization of each 659 individual instrument for these variations and calibrations using authentic standards are 660 661 essential for generating high quality measurement data with these sophisticated CIMS 662 instruments. 663 664 665 Acknowledgement 666 We would like to thank Andy Newman for providing the permeation source of 667 formic acid, and Yong Liu and James Roberts for providing the calibration source of 668 669 isocvanic acid. A. Koss acknowledges support from the NSF Graduate Fellowship Program and the CIRES Graduate Student Research Award. We gratefully acknowledge 670 the support from our colleagues at the NOAA Aircraft Operations Center for help with 671 the installation of the instrument on the NOAA WP-3D and conducting the flights. 672 673

675	References:
676	Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, 34,
677	2063-2101, 2000.
678	Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., and Williams, B. J.: Measuring acetic
679	and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity
680	dependence, and quantifying interferences, Atmospheric Measurement Techniques,
681	8, 1303-1321, 10.5194/amt-8-1303-2015, 2015.
682	Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J.
683	A., Cubison, M. J., Gonin, M., and Worsnop, D. R.: A field-deployable, chemical
684	ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471-1479,
685	10.5194/amt-4-1471-2011, 2011.
686	Blake, R. S., Whyte, C., Hughes, C. O., Ellis, A. M., and Monks, P. S.: Demonstration of
687	proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of
688	trace volatile organic compounds, Analytical Chemistry, 76, 3841-3845,
689	10.1021/ac0498260, 2004.

- Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-Transfer Reaction Mass 690 Spectrometry, Chemical Reviews, 109, 861-896, Doi 10.1021/Cr800364q, 2009. 691
- Chernushevich, I. V., Loboda, A. V., and Thomson, B. A.: An introduction to 692 quadrupole-time-of-flight mass spectrometry, Journal of Mass Spectrometry, 36, 693 849-865, 10.1002/jms.207, 2001. 694
- Corbin, J., Othman, A., D. Allan, J., R. Worsnop, D., D. Haskins, J., Sierau, B., 695 Lohmann, U., and A. Mensah, A.: Peak-fitting and integration imprecision in the 696 697 Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-698 constrained fits, Atmospheric Measurement Techniques, 8, 4615-4636, 10,5194/amt-
- 699 8-4615-2015, 2015.
- Cubison, M. J., and Jimenez, J. L.: Statistical precision of the intensities retrieved from 700 701 constrained fitting of overlapping peaks in high-resolution mass spectra, Atmospheric Measurement Techniques, 8, 2333-2345, 10.5194/amt-8-2333-2015, 702 2015. 703
- de Gouw, J., and Warneke, C.: Measurements of volatile organic compounds in the 704 705 earth's atmosphere using proton-transfer-reaction mass spectrometry. Mass 706 Spectrometry Reviews, 26, 223-257, 2007.
- de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, 707 M., Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton 708 transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic 709 compounds in the atmosphere during the New England Air Quality Study (NEAQS) 710
- 711 in 2002, Journal of Geophysical Research-Atmospheres, 108,
- doi:10.1029/2003JD003863, 10.1029/2003jd003863, 2003a. 712
- de Gouw, J. A., Warneke, C., Parrish, D. D., Holloway, J. S., Trainer, M., and 713
- Fehsenfeld, F. C.: Emission sources and ocean uptake of acetonitrile (CH3CN) in the 714
- atmosphere, Journal of Geophysical Research-Atmospheres, 108, 715
- doi:10.1029/2002JD002897, 10.1029/2002jd002897, 2003b. 716
- de Gouw, J. A., McKeen, S. A., Aikin, K. C., Brock, C. A., Brown, S. S., Gilman, J. B., 717
- 718 Graus, M., Hanisco, T., Holloway, J. S., Kaiser, J., Keutsch, F. N., Lerner, B. M.,
- Liao, J., Markovic, M. Z., Middlebrook, A. M., Min, K. E., Neuman, J. A., Nowak, J. 719

720	B., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P.
721	R., Warneke, C., Welti, A., and Wolfe, G. M.: Airborne measurements of the
722	atmospheric emissions from a fuel ethanol refinery, Journal of Geophysical
723	Research: Atmospheres, 120 , $4385-4397$, $10.1002/2015$] $d023138$, 2015 .
724	Derwent, R. G., Dernie, J. I. R., Dollard, G. J., Dumitrean, P., Mitchell, K. F., Murrells,
725	T. P., Telling, S. P., and Field, R. A.: Twenty years of continuous high time
726	resolution volatile organic compound monitoring in the United Kingdom from 1993
727	to 2012, Atmospheric Environment, 99, 239-247, 10.1016/j.atmosenv.2014.10.001,
728	
729	Ennis, C. J., Reynolds, J. C., Keely, B. J., and Carpenter, L. J.: A nonlow cathode proton
730	transfer reaction time of flight mass spectrometer, international Journal of Mass
731	Spectrometry, 247, 72-80, 10.1016/j.ijms.2005.09.008, 2005.
732	Gentner, D. R., Ford, T. B., Guha, A., Boulanger, K., Brioude, J., Angevine, W. M., de
733	Gouw, J. A., Warneke, C., Gilman, J. B., Ryerson, I. B., Peischl, J., Meinardi, S.,
734	Blake, D. R., Atlas, E., Lonneman, W. A., Kleindienst, I. E., Beaver, M. R., Clair, J.
735	M. S., Wennberg, P. O., VandenBoer, T. C., Markovic, M. Z., Murphy, J. G., Harley,
736	R. A., and Goldstein, A. H.: Emissions of organic carbon and methane from
/3/	petroleum and dairy operations in California's San Joaquin Valley, Atmos. Chem.
/38	Phys., 14, 4955-4978, 10.5194/acp-14-4955-2014, 2014.
739	Graus, M., Muller, M., and Hansel, A.: High Resolution PTR-TOF: Quantification and
740	Maga Spectrometry 21, 1027, 1044, DOI 10, 1016/j. jagma 2010.02,006, 2010
741	Hallquigt M. Wonger I.C. Boltonenerger H. Budieh V. Simnson D. Clouw M.
742	Dommen I. Donahue N.M. George C. Goldstein A.H. Hamilton I.F.
743	Herrmann H. Hoffmann T. Jinuma V. Jang M. Jankin M. F. Jimanez, J. J.
744	Kiendler-Scharr & Maenhaut W McFiggans G Mentel T F Monod A
746	Prevot A S H Seinfeld I H Surratt I D Szmiojelski R and Wildt I. The
747	formation properties and impact of secondary organic aerosol: current and emerging
748	issues Atmospheric Chemistry and Physics 9 5155-5236 2009
749	Holzinger, R., Goldstein, A. H., Haves, P. L., Jimenez, J. L., and Timkovsky, J.:
750	Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study.
751	Atmospheric Chemistry and Physics, 13, 10125-10141, 10,5194/acp-13-10125-2013.
752	2013.
753	Hunter, E. P. L., and Lias, S. G.: Evaluated Gas Phase Basicities and Proton Affinities of
754	Molecules: An Update, Journal of Physical and Chemical Reference Data, 27, 413-
755	656, doi:http://dx.doi.org/10.1063/1.556018, 1998.
756	Isaksen, I. S. A., Granier, C., Myhre, G., Berntsen, T. K., Dalsøren, S. B., Gauss, M.,
757	Klimont, Z., Benestad, R., Bousquet, P., Collins, W., Cox, T., Eyring, V., Fowler, D.,
758	Fuzzi, S., Jöckel, P., Laj, P., Lohmann, U., Maione, M., Monks, P., Prevot, A. S. H.,
759	Raes, F., Richter, A., Rognerud, B., Schulz, M., Shindell, D., Stevenson, D. S.,
760	Storelvmo, T., Wang, W. C., van Weele, M., Wild, M., and Wuebbles, D.:
761	Atmospheric composition change: Climate-Chemistry interactions, Atmospheric
762	Environment, 43, 5138-5192, 10.1016/j.atmosenv.2009.08.003, 2009.
763	Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Mark, L., Seehauser, H.,
764	Schottkowsky, R., Sulzer, P., and Mark, T. D.: A high resolution and high sensitivity
765	proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS),

Atmospheric Measurement Techniques Discussions

766 767	International Journal of Mass Spectrometry, 286, 122-128, DOI 10.1016/i.jims.2009.07.005, 2009.
768	Karl, T. G., Christian, T. J., Yokelson, R. J., Artaxo, P., Hao, W. M., and Guenther, A.:
769	The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile
770	organic compound emissions measured by PTR-MS, FTIR, and GC from tropical
771	biomass burning, Atmospheric Chemistry and Physics, 7, 5883-5897, 2007.
772	Kaser, L., Karl, T., Schnitzhofer, R., Graus, M., Herdlinger-Blatt, I. S., DiGangi, J. P.,
773	Sive, B., Turnipseed, A., Hornbrook, R. S., Zheng, W., Flocke, F. M., Guenther, A.,
774	Keutsch, F. N., Apel, E., and Hansel, A.: Comparison of different real time VOC
775	measurement techniques in a ponderosa pine forest, Atmos. Chem. Phys., 13, 2893-
776	2906, 10.5194/acp-13-2893-2013, 2013.
777	Lee, B. H., Lopez-Hilfiker, F., Mohr, C., Kurtén, T. C., Worsnop, D., and Thornton, J.
778	A.: An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass
779	Spectrometer: Application to Atmospheric Inorganic and Organic Compounds,
780	Environmental Science & Technology, 10.1021/es500362a, 2014.
781	Lerner, B.: A new analysis system for whole air sampling: description and early results,
782	in prep.
783	Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile organic
784	compounds at pptv levels by means of proton-transfer-reaction mass spectrometry
785	(PTR-MS) - Medical applications, food control and environmental research,
786	International Journal of Mass Spectrometry, 173, 191-241, 1998.
787	Lopez-Hilfiker, F. D., Iyer, S., Mohr, C., Lee, B. H., D'Ambro, E. L., Kurtén, T., and
788	Thornton, J. A.: Constraining the sensitivity of iodide adduct chemical ionization
789	mass spectrometry to multifunctional organic molecules using the collision limit and
790	thermodynamic stability of iodide ion adducts, Atmos. Meas. Tech. Discuss., 8,
791	10875-10896, 10.5194/amtd-8-10875-2015, 2015.
792	Midey, A. J., Williams, S., Arnold, S. T., and Viggiano, A. A.: Reactions of
793	H3O+(H2O)0,1 with Alkylbenzenes from 298 to 1200 K [†] , The Journal of Physical
794	Chemistry A, 106, 11726-11738, 10.1021/jp014141e, 2002.
795	Mielke, L. H., Erickson, D. E., McLuckey, S. A., Muller, M., Wistnaler, A., Hansel, A.,
796	and Snepson, P. B.: Development of a Proton-Transfer Reaction-Linear for Trap
797	Mass Spectrometer for Quantitative Determination of Volatile Organic Compounds,
798	Müller M. Crous M. Duyskenen T. M. Schnitzhofer D. Demberger I. Keser I.
799	Titzmann T. Hörtnagl I. Wohlfahrt C. Karl T. and Hangal A. First addy
000 001	covariance flux measurements by DTP TOF Atmos Meas Tech 2 387 305
802	$10.5101/_{2}$ mt_3_387_2010 2010
802	Müller M Mikoviny T Feil S Haidacher S Hanel G Hartungen F Jordan A
804	Märk I Mutschlechner P Schottkowsky R Sulzer P Crawford I H and
805	Wisthaler A · A compact PTR-ToF-MS instrument for airborne measurements of
806	volatile organic compounds at high spatiotemporal resolution. Atmos Meas Tech
807	7 3763-3772 10 5194/amt-7-3763-2014 2014a
808	Müller, M., Mikoviny, T., and Wisthaler, A.: Detector aging induced mass discrimination
809	and non-linearity effects in PTR-ToF-MS. International Journal of Mass
810	Spectrometry, 365-366, 93-97, 10.1016/i.iims.2013.12.008. 2014b.
-	1 <i>J, , , J</i> , J [,] J [,] ,

811 812	Müller, M., Anderson, B., Beyersdorf, A., Crawford, J. H., Diskin, G., Eichler, P., Fried, A., Keutsch, F. N., Mikoviny, T., Thornhill, K. L., Walega, J. G., Weinheimer, A. J.,
813	Yang, M., Yokelson, R., and Wisthaler, A.: In situ measurements and modeling of
814	reactive trace gases in a small biomass burning plume. Atmospheric Chemistry and
815	Physics Discussions, 15, 31501-31536, 10.5194/acpd-15-31501-2015, 2015.
816	Park, JH., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and
817	Holzinger, R.: Active Atmosphere-Ecosystem Exchange of the Vast Majority of
818	Detected Volatile Organic Compounds, Science, 341, 643-647.
819	10.1126/science.1235053. 2013.
820	Raspoet, G., Nguyen, M. T., McGarraghy, M., and Hegarty, A. F.: Experimental and
821	Theoretical Evidence for a Concerted Catalysis by Water Clusters in the Hydrolysis
822	of Isocvanates. The Journal of Organic Chemistry, 63, 6867-6877.
823	10.1021/io980639+, 1998.
824	Spanel, P., and Smith, D.: Reactions of Hydrated Hydronium Ions and Hydrated
825	Hydroxide Ions with Some Hydrocarbons and Oxygen-Bearing Organic Molecules.
826	The Journal of Physical Chemistry, 99, 15551-15556, 10.1021/j100042a033, 1995.
827	Spanel, P., and Smith, D.: SIFT studies of the reactions of H3O+, NO+ and O-2(+) with a
828	series of alcohols, International Journal of Mass Spectrometry, 167, 375-388, 1997.
829	Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kimmel, J. R., Cubison, M. J., Chhabra,
830	P. S., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Methods
831	to extract molecular and bulk chemical information from series of complex mass
832	spectra with limited mass resolution, International Journal of Mass Spectrometry,
833	10.1016/j.ijms.2015.08.011, 2015.
834	Steeghs, M. M. L., Sikkens, C., Crespo, E., Cristescu, S. M., and Harren, F. J. M.:
835	Development of a proton-transfer reaction ion trap mass spectrometer: Online
836	detection and analysis of volatile organic compounds, International Journal of Mass
837	Spectrometry, 262, 16-24, 10.1016/j.ijms.2006.09.031, 2007.
838	Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of
839	biomass burning emissions from cooking fires, peat, crop residue, and other fuels
840	with high-resolution proton-transfer-reaction time-of-flight mass spectrometry,
841	Atmos. Chem. Phys., 15, 845-865, 10.5194/acp-15-845-2015, 2015.
842	Sulzer, P., Hartungen, E., Hanel, G., Feil, S., Winkler, K., Mutschlechner, P., Haidacher,
843	S., Schottkowsky, R., Gunsch, D., Seehauser, H., Striednig, M., Jürschik, S., Breiev,
844	K., Lanza, M., Herbig, J., Märk, L., Märk, T. D., and Jordan, A.: A Proton Transfer
845	Reaction-Quadrupole interface Time-Of-Flight Mass Spectrometer (PTR-QiTOF):
846	High speed due to extreme sensitivity, International Journal of Mass Spectrometry,
847	368, 1-5, 10.1016/j.ijms.2014.05.004, 2014.
848	Tanimoto, H., Aoki, N., Inomata, S., Hirokawa, J., and Sadanaga, Y.: Development of a
849	PTR-TOFMS instrument for real-time measurements of volatile organic compounds
850	in air, International Journal of Mass Spectrometry, 263, 1-11,
851	http://dx.doi.org/10.1016/j.ijms.2007.01.009, 2007.
852	Warneke, C., Kuczynski, J., Hansel, A., Jordan, A., Vogel, W., and Lindinger, W.: Proton
853	transfer reaction mass spectrometry (PTR-MS): propanol in human breath, Int J Mass
854	Spectrom, 154, 61-70, <u>http://dx.doi.org/10.1016/0168-1176(96)04369-8</u> , 1996.
855	Warneke, C., van der Veen, C., Luxembourg, S., de Gouw, J. A., and Kok, A.:
856	Measurements of benzene and toluene in ambient air using proton-transfer-reaction

- mass spectrometry: calibration, humidity dependence, and field intercomparison,
 International Journal of Mass Spectrometry, 207, 167-182, 2001.
- Warneke, C., De Gouw, J. A., Kuster, W. C., Goldan, P. D., and Fall, R.: Validation of
 atmospheric VOC measurements by proton-transfer-reaction mass spectrometry
 using a gas-chromatographic preseparation method, Environmental Science &
 Technology, 37, 2494-2501, 10.1021/es026266i, 2003.
- Warneke, C., Kato, S., De Gouw, J. A., Goldan, P. D., Kuster, W. C., Shao, M., Lovejoy,
 E. R., Fall, R., and Fehsenfeld, F. C.: Online volatile organic compound
 measurements using a newly developed proton-transfer ion-trap mass spectrometry
 instrument during New England Air Quality Study Intercontinental Transport and
- Chemical Transformation 2004: Performance, intercomparison, and compound
 identification, Environmental Science & Technology, 39, 5390-5397,
- 869 10.1021/es0506020, 2005.
- Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., Rappenglueck, B.,
 Fehsenfeld, F. C., Graus, M., Gilman, J. B., and de Gouw, J. A.: Airborne
 formaldehyde measurements using PTR-MS: calibration, humidity dependence,
 inter-comparison and initial results, Atmos. Meas. Tech., 4, 2345-2358, 10.5194/amt4-2345-2011, 2011.
- Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E.,
 Blake, D., Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic
 compounds in Los Angeles, California: Five decades of decreasing emissions, J.
 Geophys. Res., 117, D00V17, 10.1029/2012jd017899, 2012.
- Warneke, C., Veres, P. R., Murphy, S. M., Soltis, J., Field, R. A., Graus, M. G., Koss, A.,
 Li, S. M., Li, R., Yuan, B., Roberts, J. M., and de Gouw, J. A.: PTR-QMS vs. PTRTOF comparison in a region with oil and natural gas extraction industry in the Uintah
 Basin in 2013, Atmos. Meas. Tech., 8, 411-420, 10.5194/amtd-7-6565-2014, 2015.
- Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A.
 R., Middlebrook, A. M., Brock, C. A., Roberts, J. M., Brown, S. S., Neuman, J. A.,
- 885 Lerner, B. M., Lack, D., Law, D., Huebler, G., Pollack, I., Sjostedt, S., Ryerson, T.
- B., Gilman, J. B., Liao, J., Holloway, J., Peischl, J., Nowak, J. B., Aikin, K., Min, K.
 E., Washenfelder, R. A., Graus, M. G., Richardson, M., Markovic, M. Z., Wagner,
- N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P.,
- 889 McKeen, S., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J., Nenes, A., Wolfe, G.
- 890 M., Hanisco, T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Keutsch, F. N.,
- 891 Kaiser, J., Mao, J., and Hatch, C.: Instrumentation and Measurement Strategy for the
- NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013,
 Atmos. Meas. Tech. Discuss., 2016, 1-39, 10.5194/amt-2015-388, 2016.
- Atmos. Meas. 1ech. Discuss., 2016, 1-39, 10.5194/amt-2015-388, 2016.
- Zheng, J., Ma, Y., Chen, M. D., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z.,
 Wang, X., and Chen, L. X.: Measurement of atmospheric amines and ammonia using
 the high resolution time-of-flight chemical ionization mass spectrometry,
 Atmospheric Environment, 102, 249-259, 10.1016/j.atmosenv.2014.12.002, 2015.
- 898
- 899
- 900

901 Tables

902 Table 1. Sensitivities and detection limits of H₃O⁺ ToF-CIMS for various VOCs

903

VOC spacios	Ion Formula	Sensitivity ¹		Background,	α	1-s detection
voc species	ion Formula	ncps/ppb	cps/ppb ²	cps ²	value ³	limit, ppt
Methanol*	$\mathrm{CH}_4\mathrm{OH}^+$	81	158	128	1.34	397
Acetonitrile*	$C_2H_3NH^+$	376	822	26	1.33	45
Acetaldehyde [*]	$C_2H_4OH^+$	289	654	499	1.36	195
Acetone*	$C_3H_6OH^+$	354	916	261	1.28	97
Acetic acid	$C_2H_4O_2H^+$	209	551	660	1.40	283
Furan	$C_4H_4OH^+$	168	470	11	1.26	58
Isoprene*	$C_5H_8H^+$	73	206	26	1.21	162
MVK	$C_4H_6OH^+$	160	454	46	1.24	85
MEK [*]	$C_4H_8OH^+$	308	886	48	1.21	45
Benzene*	$C_6H_6H^+$	165	493	22	1.48	96
Toluene*	$C_7H_8H^+$	178	579	6	1.39	47
o-xylene*	$C_8H_{10}H^+$	193	673	4	1.49	40
1,2,4 - TMB [*]	$C_9H_{12}H^+$	185	686	3	1.69	45
α-pinene	$C_{10}H_{16}H^{+}$	67	263	2	1.24	67

species during the SONGNEX campaign

904 ¹ Sensitivity under dry condition;

 2 Calculations using $H_{3}O^{+}$ signal at the typical level of 2.5×10^{6} cps during the SONGNEX

906 campaign. The signals or sensitivities are not corrected for the ToF duty cycle (see text).

907 $^{3}\alpha$ is the scaling factor of the errors in ion signals relative to Poissonian statistics

908 (Equation 1).

^{*}Stars indicate that the compounds were calibrated in-flight using the ten-component gas

910 standard.

912 Figures:

- Figure 1. Schematic drawing of the H_3O^+ ToF-CIMS. HC: hollow-cathode discharge; IC:
- 915 intermediate chamber; SSQ: small segmented quadrupole; BSQ: big segmented
- 916 quadrupole; PB: primary beam; MCP: microchannel plate detector.
- 917

918

Figure 2. (A) Signals of reagent ions and $H_3O^+(H_2O)/H_3O^+$ ratio ($R_{37/19}$) as a function of

920 SSQ pressure. (B) Signals of protonated benzene and acetone at constant mixing ratios of

921 2.5 ppb as a function of SSQ pressure. The light blue vertical dashed lines indicate the

- 922 SSQ pressure (1.30 mbar) used during the SONGNEX campaign.
- 923

Figure 3. (A) Reagent ion signals as a function of water vapor mixing ratios in the 926 instrument. (B) Inferred transmission ratios between H₃O⁺ and H₃O⁺(H₂O) ions 927 $(T_{H_30^+}/T_{H_30^+(H_20)})$ as a function of water vapor mixing ratios. (C) The H₃O⁺ signals and 928 929 total signals of the two reagent ions that are corrected to the transmission factor of 930 $H_3O^+(H_2O)$ ions as a function of water vapor mixing ratios. The measured $H_3O^+(H_2O)$ signals are also shown. The shaded areas in (B) and (C) indicate the possible ranges of 931 932 the parameters, which are bounded by estimates from the depletion experiments of 933 methanol and acetonitrile, respectively. (D) $H_3O^+(H_2O)/H_3O^+(R_{37/19})$ as a function of 934 water vapor mixing ratios during SONGNEX and from laboratory experiments. The 935 black line is the linear fit to all of the SONGNEX data. 936

- 937
- 938

939

940

941 Figure 4. Normalization and humidity dependence of acetone and benzene detection from

942 a laboratory experiment. (A) Background subtracted raw signals of protonated acetone

and benzene with mixing ratios of 8.0 ppb as the function of $R_{37/19}$. The signals of H₃O⁺

and $H_3O^+(H_2O)$ are also shown for reference. (B) Signals of protonated acetone and

benzene normalized to the H₃O⁺ signal as a function of $R_{37/19}$.

947

948 Figure 5. Derived humidity dependence curves for the normalized signals relative to dry

949 condition as a function of $R_{37/19}$ ratios for oxygenates (A) and hydrocarbons (B),

950 respectively. The humidity dependent curves of benzene and acetone are shown in both

- 951 (A) and (B). The thick gray lines indicate the reciprocal of the H_3O^+ signal relative to dry
- 952 conditions $(\frac{1}{m_{19}})$. Vertical dashed lines in A and B indicate the level of $R_{37/19}$ under dry
- 953 condition. (C) Normalized signals at $R_{37/19}$ =1.4 (equivalent to RH=90% at 25 °C)
- 954 relative to dry condition for different VOC species as a function of their proton affinities.
- 955 Data points are color-coded using the permanent dipole moment of the species. The two
- 956 purple vertical dashed lines are proton affinities of water and water dimer, respectively.
- 957 The two black dashed lines indicate the linear fits to the species with permanent dipole
- 958 moment larger than 1 (y=- $1.30+2.52\times10^{-3}\times PA$) and lower than 1 (y=- $1.38+2.29\times10^{-3}\times PA$),
- 959 respectively.
- 960
- 961

Figure 6. (A) Normalized signals relative to dry condition for protonated and dehydrated ions of isopropanol as a function of $R_{37/19}$ ratios. The vertical dashed line indicates the level of $R_{37/19}$ under dry condition. (B) Normalized signals relative to dry condition for protonated ion of ethanol as a function of $R_{37/19}$ ratios.

Figure 7. (A) The ratios of hydrated ions to protonated ions for several OVOC species as a function of $R_{37/19}$ ratios. (B and C) Normalized signals relative to dry condition for protonated and hydrated ions of formic acid (HCOOH, B) and isocyanic acid (HNCO, C) as a function of $R_{37/19}$ ratios. The ratios of hydrated ions to protonated ions for formic acid and isocyanic acid versus $R_{37/19}$ ratios are also shown in (B) and (C), respectively. Vertical dashed lines in each panel indicate the level of $R_{37/19}$ under dry condition.

- 975
- 976
- 977
- 978

979

980 Figure 8. Separation of benzaldehyde and C8 aromatics from the nominal mass at m/z

981 107 in a period (18:15-18:45 UTC) during the flight over the Permian Basin on April 23,

982 2015. (A and B) HR peak fittings of mass spectra at *m/z* 107 at 18:25 and 18:37,

```
983 respectively. (C) Time series of benzaldehyde and C8 aromatics during the period. Flight
```

- altitude of the NOAA WP-3D aircraft is included in C.
- 985
- 986
- 987

988

Figure 9. Inflight calibration results of benzene (A), isoprene (B), acetaldehyde (C) and acetone (D) during the SONGNEX campaign. Signals for the species have been humidity corrected. Data points are color-coded using $R_{37/19}$ ratios. The total times (N) when gas standard was introduced into the instrument during SONGNEX and correlation

- 993 coefficients (R) are shown in the textbox.
- 994

996

997 Figure 10. Scatterplot of the standard deviations of background signals versus the

998 measured background signals from a flight on April 27, 2015 during SONGNEX. In this

graph, the signals are not corrected for the ToF duty cycle to better reflect the counting

1000 statistics of the ToF detector. The two dashed lines are \sqrt{N} and $2 \times \sqrt{N}$, respectively.

1003 Figure 11. Comparison of the sensitivities (A), total ion counts from measurements in a 1004 period of 15 s (B) and 1-s detection limits (C) of methanol, acetone and benzene for the NOAA PTR-QMS (Warneke et al., 2011), a PTR-TOF during UBWOS 2013 (Warneke 1005 et al., 2015), the PTR-QiTOF in Sulzer et al. (2014) and the H₃O⁺ ToF-CIMS presented 1006 1007 here during SONGNEX. In (B), we assume that the PTR-QMS was operated at the typical cycle length of 15 s with 1-s dwell time for the three compounds as have been the 1008 1009 norm during our aircraft measurements. Note that the detection limits (DL) of methanol 1010 in panel C are drawn on the right axis. 1011

1012

1013 Figure 12. Comparison of measured mixing ratios of benzene, toluene and C8 aromatics

1014 between the H₃O⁺ ToF-CIMS and iWAS (Lerner, in prep) during the SONGNEX

1015 campaign.

Figure 13. VOC measurements by the H₃O⁺ ToF-CIMS for the characterization of air 1018 1019 masses and atmospheric photochemistry during a part of the flight (20:50-22:00 UTC) on April 13, 2015 over the Denver-Julesburg basin. Time series of various VOC species 1020 from oil/gas or urban emissions (A), biomass burning (B), secondary formation (C) and 1021 1022 agricultural emissions (D) are shown. The inserted plot in B highlights acetonitrile 1023 around 21:34 UTC, where the black dots indicate re-sampled acetonitrile data every 15 s, reflecting measurement results if a PTR-QMS had been deployed onboard the NOAA 1024 1025 WP-3D. Flight tracks color-coded using mixing ratios of benzene (E), acetonitrile (F), acetaldehyde (G) and acetic acid (H) are shown in the right panels. Urban regions and 1026 1027 locations of oil and gas wells are indicated in the right panels. The arrow in E indicates 1028 wind direction in the boundary layer during this period. 1029 1030